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Abstract

What is the match cost of adding a new rule to a production system (rule-based system)? Two conflicting
views have emerged. Research in EBL indicates that learned rules add to the match cost of a production
system. Thus, as the production system size increases with learning, the match cost will also increase.
There is much data in the literature to support this phenomenon. On the contrary, researchers in parallel
production systems have concluded that the-match effort in a production system is limited, independent of
the size of the production system. Thus, an increase in the size of the production system will not lead to
an increase in the match cost. There is much data to support this phenomenon as well.

In this paper, we point out these contradictory views of production match in the two research
communities. A direct analysis of these conflicting views is difficult, since the two communities have
worked with vastly different systems. Therefore, we have developed some large production systems in
Soar, to analyze the situation within a common framework. This common framework narrows down the
possible causes for this conflict, and raises important questions for future work.
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1. Introduction
Production systems (rule-based systems) are used extensively in the field of Al [Laffey et al.

88, McDermott 82, Newell 90, Waterman and Hayes-Roth 78]. In production systems, computation
proceeds by repeated execution of recognize-act cycles. In the recognize phase, productions (condition-
action rules) in the system are matched with a set of data-items, called working memory. In the act phase,
one or more of the matched productions are fired, possibly changing the working memory, and causing
the system to execute the next recognize-act cycle.

This paper focuses on the computationally expensive recognize phase, specifically on production
match. Does the match effort during a recognize-act cycle increase due to the addition of a new
production? Two conflicting views have emerged.

Research in the field of explanation-based learning (EBL) indicates that learned rules add to the match
cost of a production system. Thus, as the production system size increases with learning, the match cost
continues to increase with it. This increasing match cost soon devours all the gains, and causes an overall
slowdown - the utility problem [Minton 88a]. There is much data in the literature to support this
phenomenon [Cohen 90, Etzioni 90, Minton 85, Minton 88a, Tambe, et al. 90].

On the contrary, researchers in the field of parallel production systems have concluded that the match
effort in a production system is limited, independent of the number of productions in the system. Thus, an
increase in the number of productions does not lead to an increase in the match effort during a recognize-
act cycle. This limited match computation leads to limited match parallelism in production systems. There
is much data to support this phenomenon as well [Gupta 86, Gupta, et al. 86, Miranker 87a, Miranker
91, Oflazer 87].

It is important to understand and analyze these conflicting views. In particular, each field has evolved
around its particular view of match. In the EBL field, much research has focused on addressing the utility
problem, and selectivity about learning new rules has emerged as a popular solution. In contrast, research
in parallel production systems has progressed under the assumption of limited match parallelism, with the
development of suitable parallel implementations. Thus, an investigation of the conflict could provide
new research directions, and lead to a revision in the focus of either one or both fields.

Our analysis in this paper is an attempt to narrow down the scope of the conflict, as well as the factors
responsible for the conflict. This analysis camot be expected to result in a proclamation of one side to be
absolutely right or wrong - there is much data to support both points of view. Instead, we attempt to
provide a better understanding of the conflict and the factors responsible for it.

To narrow down the scope of the conflict, we focus on production systems with large numbers
(thousands or tens of thousands) of productions. Much of the data on the conflict, particularly from the
EBL field, is for smaller production systems with up to two-hundred productions. Thus, is the conflict of
views confined to small production systems or does it extend to large systems? Understanding this issue
is critical for large systems. These production systems could suffer from a catastrophic slowdown in the
match; hence it is important to understand their processing requirements and address them adequately.
For instance, if large production systems cause a severe slowdown, then would it be necessary to design
new match algorithms to provide adequate speedups? Would it be necessary to design new parallel
implementations? On the other extreme, if these systems do not cause any slowdown in production match,
then could the utility problem be considered solved? and so on.
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To narrow down the factors responsible for the conflict, we investigate the large production systems
using a common framework - Soar [Laird, Newell, and Rosenbloom 87], an integrated problem-solving
and learning system. Research in EBL and parallel production systems is based on vastly different
systems. Some or all of the differences among these systems could potentially be responsible for the
conflict in views. Choosing a common framework of analysis helps narrow down these differences.

The rest of this paper is organized as follows: Section 2 describes the conflict in more detail. Section 3
attempts to analyze the conflict using Soar. Finally, Section 4 discusses possible implications of our
analysis.

2. The Clash of Views
We can obtain a better understanding of the clash of views by focusing on match algorithms, such as

Rete [Forgy 82] and Treat [Miranker 8T], that are commonly used in production system
implementations. These algorithms employ a two phase strategy. The first phase (called the a or
constant-test phase) uses a discrimination tree to locate a small subset of productions that can potentially
lead to a successful match. The second phase (called the P phase) then processes only this small subset of
productions. It generates partial instantiations (called tokens) for this subset of productions. Each token
indicates what conditions of a production have matched, and with what variable bindings. The P phase
performs consistency-checks on the tokens, creates new tokens, generate instantiations for successfully
matched productions and so on.

Researchers in parallel production systems [Gupta and Forgy 83, Gupta 86, Mliranker 87a, Oflazer 87]
have made detailed measurements on a variety of OPS5 [Brownston et al. 85] production systems, and
analyzed them in terms of the computations in the a and P phases. These OPS5 systems vary widely in
the number of productions: from -60 productions to -2000 productions. The measuremen reveal that as
the number of productions in these systems increases, the computation in the a phase may show some
increase, but the computation in the 0 phase does not change. The a phase consumes a very small
fraction (approximately 5-10%) of the match time in a recognize-act cycle [Gupta, et al. 88]. Moreover,

aons such as the use of hashing can further reduce the proportion of time spent in the a
phase [Barachini and Theurezbacher 88, Gupta 86]. Thus, an increase in the number of productions
leads to almost no increase in the match time per recognize-act cycle. This phenomenon leads to the
limited (10-20 fold) match parallelism available in production systems. 1

Ttnus, the conrclusion in the parallel production systems field is that the computation in the 0 phase is
approximately constant, independent of the size of the production system. In Gupta's words [Gupta 86,
page 43]: ...the number of productions that are affected is quite independent of the number of productions
present in the system..., where an affected production is one that causes some computation in the P phase.
Miranker [Miranker 91, page 345], states this conclusion as: ...the proportion of time spent in match does
not increase with the number of rules in a program.

This conclusion has plyed a key role in the development of parallel production system
implementations. For instance, Gupta [Gupta 84, page 25] points out that the limited match effort will
lad to limited match paallelism and argues that ...snce [match] paralelism is limited, we cannot

/

'S odor minor factors, mob u be lage va in die piocesing of d d match
puaflhlman -wal (Gupta 86]. Also,noe die dim =area odu r oe of pmllefism besides match paralelim in production
sysun. (HarVe, a aL 91].
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effectively use a very large number of processors. Thus, parallel machines with a small number of
powerful processors are preferred over specialized massively parallel architectures [Gupta 86, Gupta, et
al. 88].

Data from existing EBL systems [Etzioni 90, Minton 88a, Tambe, et al. 90] points in the opposite
direction. It predicts an increase in the processing of both the a and P phases with an increasing number
of productions in the system. Figure 1 shows the EBL perspective on match cost for a hypothetical
production system. The horizontal axis plots the number of productions in the production system. The
figure shows that as the number of productions continues to increase, the match time per recognize-act
cycle (on the vertical axis) increases as well. This increase in match time is called the average growth
effect(AGE) [TIambe, et al. 90].2
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Figure 1: The average growth effect prediction.

In general, the AGE graph may not be perfectly linear. However, the impact of the addition of each new
set of productions is non-negligible. Tambe [Tambe 91, page 63] states: ...accumulating a large number
of productions may overwhelm the matcher after some time. Minton [Minton 85, page 596] claims the
following about systems that learn new rules from problem-solving experience: As the system gains
experience, it gradually becomes swamped by the knowledge it has acquired. In some cases, the
performance can eventually degrade so dramatically that the system operates even more poorly than a
non-learning system.

This view of production match has led to much concern in the EBL field about acquiring new rules.
Fisher et al. [Fisher et aL 92] make the following observation about this issue: ...the utility problem, or
the exorbikt cost of using the learned knowledge, proved to be a signiftcant obstacle to further
progress. Minton et aL [Minto et aL 87, page 122] claim: A learning algorihn cannot sifply add
control knowledge to a problem solver haphazardly; it must be sensitive to the problem-solver's
computational architecture and the potential costs of adding knowledge. The utility issue has now
emerged as a key research question in the EBL field [Faer et aL 92].

2While rrambe, et &L 90] eMpod on dhe AGE penmnmo. dwsir main focu was on expumv. leared rules, Le, advidusl
lerned rules *&I reqund a cambmnsial mush effr. In conunst, our fous is on the impea of a larg mdvidmRy

-xwMv rubs.
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Thus, the two fields have compietely contradictory views on production match: the EBL field has
concluded that production systems will suffer from AGE, while the parallel production systems field has
concluded that they will not. Furthermore, these are key conclusions in the two fields, which have
influenced the course of their development.

3. Analyzing the Conflict
As discussed earlier, we have focused on production systems containing large numbers of productions

to analyze the conflict, since it is particularly relevant in the context of such systems. Additionally, from
an experimental perspective, large systems are expected to present a very clear case either for or against
the presence of AGE - an AGE, if any, would be significant and clearly visible.

We have developed these large production systems in Soar, an integrated problem-solving and learning
system. Soar has already been well-reported in the literature [Laird, Newell, and Rosenbloom
87, Rosenbloom, et al. 91]. For the purposes of this paper, two key points about Soar need to be noted.
First, Soar uses a production system for its knowledge-base. Second, Soar uses chunking [Laird,
Rosenbloom, and Newell b6], a form of explanation-based learning, to add new productions (called
chunks) to its production system.

Developing these large systems in Soar helps to narrow down the factors responsible for the conflict.
Specifically, much research in parallel production systems is based on OPS5, while EBL research is based
on systems such as Prodigy [Minton 88b], Soar [Laird, Newell, and Rosenbloom 87] and others. There
are a large number of differences among these systems, e.g., OPS5 syntax and execution semantics differs
from the other systems, the match algorithm in OPS5 often differs from that in other systems, OPS5 rules
are not generated via EBL, and so on. Some or all of these differences could potentially be responsible
for the conflict in views. Choosing a common framework of analysis helps us to narrow down these
differences. The following subsections describe the large production systems that we have developed and
present the results observed in those systems.

3.1. Dispatcher-Soar
The task of our first system, Dispatcher-Soar [Doorenbos, et al. 921, is to dispatch messages for a large

organization, which is represented in an external database; Dispatcher-Soar must make queries of the
database to perform the task. The system began with 1,819 initial (unlearned) productions. Over the
course of solving a sequence of 200 problems in more than 350,000 recognize-act cycles, it learned
10,112 new productions, bringing the total size to 11,931 productions. This represents one of the largest
production systems in existence, and by far the largest number of rules ever learned by an Al system.3

From the EBL perspective, Dispatcher-Soar would be expected to show a very significant AGE.

Figure 2 presents the result from Dispatcher-Soar4. It plots the total number of productions on the
horizontal axis. This number increases from 1,819 to 11,931 productions. The figure plots the number of
token changes per recognize-act cycle on a log scale on the vertical axis. (See Section 2 for a description

Sm RI/XCON ymnm a Digha is de only p:uo sysm we know dha exceeds 10,000 pmduion [Ba=ker n
O'Camwo 891. Systms isch a BMT (Braiuwm 90]. ha have subm isay me rules, m spaized to hve only coam in
dufra lems. tiro a, oiding tmm sonc in co, of pn lmn vai es.

*rho rems 1mup,- in this pa fo Sowr vgon 5.2.2.
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of tokens.) The number of tokens generated by the matcher during a recognize-act cycle is an
implementation independent measure of the amount of match effort in that cycle [Minton 88b, Nayak,
Gupta, and Rosenbloom 88, Tambe, et al. 90]. Since measuring the system's performance after each
recognize-act cycle (for the 350,000 plus cycles) would be extremely inefficient, we made measurements
at 50-cycle intervals. In Figure 2, each point indicates the average number of token changes per
recognize-act cycle during such a 50-cycle intervaL5

indicates. .a .:.t

3.2 Path-planer-loa

Our second ~ Fgur 2:sem P th-ln -okar lans path feonzeactccen on sa thr-o dmninar.fce h

Thefiur shwsth abec of an AGE°. •- ove th course of h diin f1,1 e

prodbctios, the re n tok en chs per t-40 recognize-act cycle. Fr froacth,a nle sqar

Itposteme fproductionso the hoiona axis inneas nube ohe token changes per recognize-act ye.nfatalassqasft

indicates a slightly decreasing trend.

3.2. Path-planner-Soar
Our second system, Path-planner-Soar, plans paths for an agent on a two dimensional surface in the

presenceof obstacles. The primay concern of this path planning is safety, e.g., avoiding areas which
could lead to an "ambush" from a hostile agent. The system is based on the concept of weighted region
pathptng [M heU 88].

The system started out with 305 productions and learned 1,840 chunks over the course of solving 205
problems in more than 40,000 recognize-act cycles. Figure 3 presents the result from Path-planner-Soar.
It plots the number of productions on the horizontal axis, and nmnber of token changes per recognize-act
cycle on a log scale on the vertical axis. The figure shows the presence of an average growth effect in
Path-planner-Soar. A least squares fit indicates that the match cost is initially 156 tokens per cycle, and
increases by 72 tokens per cycle per 1000 new productions. That is, with 1840 new productions (a six-
fold increase in the number of productions), the matcher exhibits an approximately two-fold slowdown.

s1he namal uit of mmuent in Sor is saully a decison cycle, which is a collection of approximately five recognize-at
cycleslen meisnauw were mae at stlar 10-decision cycle intervals.
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much data to support both points of view, our analysis was not expected to proclaim either side to be
absolutely right or wrong. Instead, we attempted to narrow down the scope of the conflict as well as the
factors responsible for it.

Our attempt to narrow down the scope of the conflict was based on production systems with large
numbers of productions. However, results from the previous section indicate that this attempt was
unsuccessful. Despite the addition of more than 10,000 new productions, there is no average growth effect
in Dispatcher-Soar and the synthetic systems. But with the addition of 1,840 new productions, Path-
planner-Soar shows an average growth effect. The results do not conclusively support either viewpoint,
i.e., the conflict extends to large production systems.

However, our attempt to narrow down the factors responsible for the conflict is more successful. The
presence and absence of AGE within a common framework - Soar - shows that the clash of views on
match is not exclusively due to the differences in OPS5 and other systems. Rather, the presence or
absence of AGE appears related to particular tasks (or domains) and encoding styles. This raises the
possibility that some task encodings have the potential of causing an average growth effect, and some
have the potential of avoiding it.

An obvious hypothesis about task encodgs that avoid any AGE is that the new rules in such systems
are extremely specific, i.e., they do not match at all. However, this does not seem true, especially in
Dispatcher-Soar, where the new rules match often [Doorenbos, et al. 92]. This hypothesis also fails to
explain the lack of AGE in OPS5 systems.

From the opposing viewpoint, an obvious hypothesis that explains the presence of AGE in Path-
planner-Soar and other systems is the absence of a smart match algorithm. In our experiments with Soar,
we employed the highly optimized Rete match algorithm [Forgy 82, Scales 86]. However, whether more
optimized versions of Rete, or other smarter algorithms could alleviate or eliminate the AGE remains an
interesting question for future work. Indeed, an acknowledgement that the existing match algorithms
cannot alleviate the AGE, and that new match algorithms need to be explored, could be considered as a
key outcome of our investigation.

Clearly, much more data and analysis are required. A lot of issues remain unresolved. It is unclear if a
single common phenomenon underlies the lack of AGE in all of the OPS5 and Soar systems. Uncovering
this myste y may reveal new solutions to the utility problem. Alternatively, if a large number of systems
display a substantial AGE, then that will change the course of the field of parallel production systems -
new parallel implementations and algorithms will need to be designed. We are currently in the process of
collecting more data for large production systems.
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